Skip Navigation
Center Innovation Fund: JPL CIF

Variable and Adaptive Coded Modulation for Cognitive Networking, Year 1

Completed Technology Project

Project Description

Project Image   Variable and Adaptive Coded Modulation for Cognitive Networking
In this task, our objective is to design and implement a variable coded modulation (VCM) system capable of significantly increasing the data return of Space-to-Earth communications links, compared to non-VCM systems. This meets NASA's goal of more power and spectral-efficient technology, and is an enabling component of cognitive networks. Background. NASA missions undergo wide variation in communications link conditions. Over the course of months, the range changes dramatically from launch, to cruise, to say, Mars orbit, but link conditions change on much shorter time scales, as well. For example, a typical track of MRO tracked by the Deep-Space Network might start at antenna elevation 11°, rise to 72°, and then fall to 8° over a twelve hour period. Recent and near-future NASA missions have their data rates limited by dynamic effects such as weather (e.g., MRO Ka-band links), solar scintillation (e.g. Solar Probe), on-board interference (e.g., MRO CRISM interference), launch plumes, and other effects. A 2005 Mars Technology Program study reported that up to 50% more data can be returned on a typical Mars-lander to Mars-orbiter link when adaptive data rates are used on the link. Our task is to extend the concept of adaptive data rates to variable and adaptive coded modulation, in which the dynamic power and bandwidth resources can be much more effectively utilized. A 2010 study by ESA determined that in one practical scenario, a VCM system could more than double the total data volume returned. Our task is to make effective use of the CCSDS standard coded-modulations, thereby allowing us to operate close to the unconstrained capacity limit, regardless of link conditions. To do this, we will develop a physical-layer design that allows the transmitter to switch between coded modulations on a codeword-to-codeword basis, a mechanism to inform the receiver which coded modulation is being used, and the receiver tracking structures necessary to identify the coded-modulation and demodulate and decode the data appropriately. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.