A wireless, passive, coded sensor that is rugged, cheap and can be remotely interrogated has multiple applications at NASA. Temperature, pressure and acceleration sensors can be installed on the leading edges of wings to monitor temperature, pressure loss and also provide a profile of the forces on the structure. Additional NASA applications include acceleration sensing for monitoring vehicular acceleration and vehicular vibration, vehicular docking, rotation and directional sensing, tilt control, and fall detection. By exploring the future use of SAW devices for monitoring structural integrity, extreme temperature, extreme pressure, toxic or lethal environments, it is highly probable that the wireless SAW can change the future of Airframe safety and the required/planned maintenance process. This technology can allow the feasible embedment of sensors in key structural components of an airframe for persistent monitoring both during flight and as a post flight analysis. Not only could th A wireless, passive, coded sensor that is rugged, cheap and can be remotely interrogated has multiple applications at NASA. Temperature, pressure and acceleration sensors can be installed on the leading edges of wings to monitor temperature, pressure loss and also provide a profile of the forces on the structure. Additional NASA applications include acceleration sensing for monitoring vehicular acceleration and vehicular vibration, vehicular docking, rotation and directional sensing, tilt control, and fall detection. By exploring the future use of SAW devices for monitoring structural integrity, extreme temperature, extreme pressure, toxic or lethal environments, it is highly probable that the wireless SAW can change the future of Airframe safety and the required/planned maintenance process. This technology can allow the feasible embedment of sensors in key structural components of an airframe for persistent monitoring both during flight and as a post flight analysis. Not only could the structural integrity of the airframe be monitored but other critical states of air flight could be instrumented without the increased cost of weight associated with fiber optic or wired communication.
More »