Skip Navigation
SBIR/STTR

Guidance, Navigation, and Control System for Maneuverable Pico-Satellites, Phase I

Completed Technology Project

Project Introduction

Guidance, Navigation, and Control System for Maneuverable Pico-Satellites, Phase I
A compact, low-power GN&C system is essential to the success of pico-satellite Automated Rendezvous and Docking (AR&D). Austin Satellite Design (ASD) proposes to deliver a working design of an integrated six-degree-of-freedom (DOF) Guidance, Navigation, and Control (GN&C) system for pico-satellites at the conclusion of Phase 1 of this STTR. A six DOF translation and rotation determination and control system will be designed for a pico-satellite form-factor to generate the onboard guidance and control necessary to demonstrate autonomous control stability and perform simple proximity maneuvers. An existing NASA/JSC GPS receiver will be utilized for navigation. Added sensors, such as a magnetometer, will be combined with GPS signals for attitude determination. A thruster actuator concept will be identified and a design produced that satisfies anticipated operational requirements and that fits within the mass and power constraints of the pico-satellite mission. Flight hardware will not be procured until Phase 2; however, component characteristics will be documented and modeled during Phase 1 and GN&C algorithms will be written to include them. Software that can be deployed to embedded systems will be written and validated in simulation. At the conclusion of Phase 1, simulated GN&C will be demonstrated within a pico-satellite form factor using embedded software such that a Technology Readiness Level (TRL) of 3 or 4 is achieved. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^