Skip Navigation
SBIR/STTR

Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors, Phase I

Completed Technology Project

Project Introduction

Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors, Phase I
This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive electrochemical supercapacitors. Specifically, nanocomposites based on manganese, titanium, tantalum and vanadium oxides will be incorporated, at the nanoscale level, with electrically conductive carbon supports. Our focus will be to combine the desired pseudocapacitive characteristics of metal oxides with high surface area and large electrical conductivity of carbon supports while achieving economical and scalable manufacturing. The proposed nanocomposite materials will be tested as electrode materials in aqueous and nonaqueous supercapacitors. The proposed project will be a joint effort on NanoScale Corporation and Battelle Memorial Institute. NanoScale's role in the effort will be to synthesize nanocomposite materials, characterize their physical and chemical properties, and to optimize them based on results of electrochemical testing carried out by Battelle. Battelle's role in the effort will be to take the metal oxides prepared by NanoScale and fabricate them into supercapacitor elements to be tested in half-cell and full-cell devices. NanoScale is uniquely qualified to carry out the proposed research due to its rich experience in development and scaled-up synthesis of nanosized materials, including materials for battery applications. NanoScale has worked previously on several projects related to battery technologies. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^