Skip Navigation
SBIR/STTR

AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

Completed Technology Project

Project Introduction

AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I
Current autonomous rendezvous and docking (AR&D) capability in low Earth orbit (LEO) is constrained by sensor and effector mass, power, and accuracy limits. To this end, NASA Johnson Space Center has developed a GPS receiver, called DRAGON (Dual RF Astrodynamic GPS Orbital Navigator), specifically to address the sensor constraints. The proposed innovation includes creating a small, low-cost, and versatile technology demonstrator to validate and increase the technology readiness level of DRAGON and other state-of-the-art miniaturized sensors and effectors in an on-orbit AR&D operational scenario. For Phase 1, a demonstration platform will be developed that utilizes two picosatellites in LEO, and relative GPS as the primary sensor. These satellites will be launched as a single unit from the SSPL (Space Shuttle Payload Launcher) on STS 127, then separate and transmit DRAGON GPS data. The picosatellite technology demonstrator will be at a TRL of 7 at the end of Phase 1. For Phase 2, the demonstration platform will be further developed to further validate DRAGON, and validate IMU sensors, a 1st generation reaction control system, a 1st generation guidance navigation and control system, communication links, and an undocking mechanism. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^