Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

The Cryogenic Impact Resistant Evaluation of Filament Wound Materials for Use in Composite Pressure Vessels, Phase I

Completed Technology Project
1011 views

Project Description

The Cryogenic Impact Resistant Evaluation of Filament Wound Materials for Use in Composite Pressure Vessels, Phase I
HyPerComp Engineering Inc. (HEI) and Utah State University (USU) propose to develop technology for lightweight composite materials for use in composite structures suitable for both cryogenic and damage tolerant environments. The proposed effort will incorporate previous work performed by HEI in the cryogenic performance of composite materials as well as previously developed improved impact technologies for micro-meteor/space debris survivability. The application of filament wound composite pressure vessels in pressurized storage tanks at cryogenic temperatures has been undertaken at HEI and NASA MSFC with promising results. Likewise, HEI has been conducting research and has patented, jointly with NASA MSFC, a robust impact resistant composite pressure vessel technology. This technology shows great promise in its resistance to performance degradation from impacts, such as those that might be experienced in the space environment in the form of micrometeoroids and space debris. Both of these technologies have been characterized for lightweight composite pressure vessels separately. However, little if any understanding currently exists of their combined potential for both cryogenic and impact resistant composite structures applications, of those including, composite overwrap pressure vessels (COPV's). The combination of the foregoing cryogenic technology with an impact resistant, robust composite pressure vessel technology would be studied. Further, we believe, that combining these two technologies will provide a baseline technology from which to develop a dual-use composite structure. This would be to ensure the integrity of the light weight composite structures, such as cryogenic fuel is stored in an orbiting depot, when exposed to the harsh environment a spacecraft will be expected to encounter during the life of its mission. More »

Primary U.S. Work Locations and Key Partners

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^