Skip Navigation

Component-Based QoS-Driven Synthesis of High Assurance Embedded Software, Phase I

Completed Technology Project

Project Introduction

Component-Based QoS-Driven Synthesis of High Assurance Embedded Software, Phase I
Software is an integral part of many complex embedded systems, such as avionics, scientific exploration, and on-board systems. However, poor software reliability is a major impediment to the success of these mission-critical systems. Testing, formal verification, and code synthesis techniques have been proposed to achieve more reliable software, with automated code synthesis being the most promising method. But synthesizing a complex system from scratch is costly. A more practical approach is to synthesize systems from existing components, i.e., component-based system synthesis (CBSS). Existing research in CBSS focuses on synthesizing systems bottom-up, which has severe limitations. We propose to achieve CBSS by combining the top-down and bottom-up approaches. Specifically, we develop techniques to achieve automated system decomposition and semi-automated system architecture synthesis. The IDEAL decomposition technique decomposes a system into ``IDEAL'' units that are mathematically composable and can be developed and evolved independently. Consequently, the technique assures system reliability and enables on-the-fly feature/technology upgrades. The QoS-based architecture synthesis technique seeks to assure system QoS properties by synthesizing an architecture that optimizes QoS objectives. It also facilitates on-board system adaptation due to resource and power constraints. Combined with bottom-up techniques, such as Amphion and pattern-based code synthesis, a dramatic leap in automated CBSS capability can be achieved. The proposed research will lead to sophisticated automation for synthesizing highly reliable, multi-mission capable avionics and exploration systems. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.