Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Enhancing the efficiency of Climate and Weather Simulation in High Performance Computing Environments

Completed Technology Project
59 views

Project Description

Enhancing the efficiency of Climate and Weather Simulation in High Performance Computing Environments
A central focus of NASA's Global Modeling and Assimilation Office (GMAO) atmospheric general circulation modeling effort is the development of an atmospheric model suitable for data assimilation, weather forecasting, and climate simulation. Ongoing developments are focused on highly parallel processing, global simulations of increasing resolutions, and increased coupling of the earth system's process models. While model computation scales very well with number of available processors, a major constraining factor on the efficiency of these simulations is the input processing of Terabyte-size source data files used by the gridded component models. Our objective in this research is to increase the efficient use of CPU time associated with these simulations by paralleling I/O processing operations using an 'I/O Staging Server' which captures and makes available the required source data asynchronously with the simulation run. More efficient I/O for reading model restarts and boundary conditions, and writing model output and checkpoint files will free up processing resources that are currently idling during I/O. As a result, we will realize a significant increase both the number of models that can be involved in the simulation and the achievable resolutions of the grid components. It is estimated that currently up to 25% of a forecast run is consumed by I/O, a factor we think can be reduced by at least 50% or more through the use of State-of-the-art I/O processing approaches and supporting software infrastructure. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^