Skip Navigation
SBIR/STTR

Hybrid Element Method for Compsoite Structures Subjected to Boundary Layer Loading, Phase I

Completed Technology Project

Project Introduction

In many situations, aerospace structures are subjected to a wide frequency spectrum of mechanical and/or acoustic excitations and therefore, there is a need for the development of numerical modeling techniques that are applicable for the resolution of dynamic response of complex systems spanning the entire frequency spectrum. Further, the modeling of composite structures becomes more and more important since many new vehicle designs incorporate increased amount of composite structural components due to weight specific advantages of composites. Thus, we propose to develop techniques that will allow the prediction of noise in the interior of an enclosure such as aircraft due to the transmission of turbulent boundary layer loading in the presence of composite structural components. This innovative Hybrid Element Method (HEM) solution tool for mid-frequency analysis, which utilizes elements of DEA, together with conventional low frequency FEM tools and high frequency EFEM tools, will provide a unified framework that is applicable for the solution of full frequency spectrum vibroacoustic prediction of nonuniform aerospace structures including metallic/composite configurations, accurately and efficiently. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^