Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Multimodal Agile Ranging and Velocimetry INstrument

Completed Technology Project
665 views

Project Description

Final Summary Chart Image
We propose to investigate two new sensing modalities comprising the Multimodal Agile Ranging and Velocimetry INstrument (MARVIN) using a novel acousto-optic Structured Light Imaging Module (SLIM) previously developed under the NASA PIDDP program for planetary rover navigation and geomorphology. Based on an acousto-optic illumination engine, SLIM consumes only 10-20W of power, weighs less than a kilogram, could fit in a shirt pocket, and uses space-proven components without moving parts to rapidly generate and precisely control laser illumination patterns. Through modifications of SLIM hardware and algorithms, MARVIN enables triangulation-based wide-field active 3D imaging of nearby scenes with mm-scale resolution at distances up to 10m even in the presence of full sunlight, as well as multi-beam time-of-flight (ToF) cm-resolution ranging and Doppler velocimetry at distances of hundreds of meters, or potentially even further. MARVIN can switch between the two modes simply by moving a lens. MARVIN computes each range point in parallel and independently, is robust across a wide range of ambient lighting and albedos, and is computationally simple, increasing rover autonomy day and night, and eliminating traverse and science operation down-times due to uplinks and heavy computation required by stereo vision. MARVIN can be used as a faster, more robust, high-precision primary range sensor for landed or close-proximity robotic exploration of planets and small bodies including Mars, Ocean Worlds, asteroids, comets, and planetary moons. The proposed effort includes further feasibility and commercialization studies, algorithm development, noise and performance analysis, and a basic proof-of-concept lab demonstration of MARVIN in the near-infrared. We will also evaluate the use of telecom-wavelength sources and detectors to further improve MARVIN SNR for operation in sunlight and on icy bodies such as Europa. We believe the proposed effort will advance MARVIN from TRL2 to TRL3. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^