Skip Navigation
Center Innovation Fund: GRC CIF

Frequency Selective Reflector Antenna

Completed Technology Project

Project Introduction

Frequency Selective Reflector Antenna
Frequency Selective Surfaces (FSS) are an electromagnetic structure where a relatively thin, periodic, conductive material is designed as a spatial filter of electromagnetic waves; certain frequencies are reflected by the surface, while other frequencies are passed through the surface. The vision of this proposal is to develop a FSS specifically tailored for use in a novel, potentially high-impact FSS reflector antenna concept that would enable Ka-band multiple access system for NASA’s next generation Tracking & Data Relay Satellites (TDRS) and could drastically reduce the size, weight and cost of commercial SATCOM systems. The antenna concept consists of a series of stacked parabolic reflectors, each of which is constructed of a specially designed frequency selective surface. By carefully selecting the cutoff frequencies of these surfaces, each reflector in the series is able to direct a sub-band of frequencies to a different coverage area coincident with the pointing of that particular reflector. For example, in the picture above, the first reflector in the series (purple) is comprised of an FSS which reflects the lowest of the frequency band directly forward. Higher frequencies are passed through this first surface, at which point the second reflector (light blue) is designed to reflect the next sub-band to the left, but continue to pass the higher bands. Lastly, the final reflector in the series (dark blue) receives only the highest sub-band of frequencies, and reflects them to the right. Currently, to achieve multiple coverage areas like this requires an equivalent number of multiple reflectors, each with its own feed antennas, amplifiers, mixers, filters, etc. Alternatively, a single reflector could be paired with many multiple offset feeds, but this still requires redundant RF electronics for each feed. By unifying the distinct reflectors into a single collocated reflector, a single feed and amplifier can be used, and the cost, weight, and size of the overall system is reduced several times over. Accordingly, this proposal seeks to engineer this union of FSS and reflector antenna design, which, if successfully integrated, would have wide-reaching impact in the SATCOM arena. Tte goal is to advance the FSS Reflector Antenna design by demonstrating a proof-of-concept FSS that can meet the performance specifications required to successfully implement the antenna, including a sharp filter cutoff (high quality factor, or Q and reasonable angular response. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destination

^