Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Physics-Based Models for Aeroservoelasticity Prediction and Control

Completed Technology Project
60 views

Project Description

Final Summary Chart Image
Clear Science Corp. proposes to develop and demonstrate computational fluid dynamics (CFD)-based, reduced-order aeroservoelasticity modeling and simulation technology for fast and accurate predictions of nonlinear flight dynamics, enabling real-time, piloted and unpiloted flight simulations and providing a tool to design flight controllers for highly flexible, lightweight aircraft. Physics-based, reduced-order models (ROMs) will be developed and demonstrated with data from CFD models of the X-56, an experimental aircraft that NASA and the U. S. Air Force are using to test systems for flutter suppression and gust-load alleviation. Extended range and low fuel consumption through lightweight materials and large wing spans (high lift-to-drag ratios) are the drivers in next-generation aircraft like the X-56, but these attributes create challenges in maintaining flight safety, ride quality, and long-term structural durability. The development of flight controllers that can actively manage aeroservoelastic effects (body-freedom flutter, control reversal, gust loading) without compromising safety and aerodynamic performance is a key objective of both the X-56 Program and the proposed project. Through the proposed technology, nonlinear, aeroservoelastic ROMs can be coupled to other components of a flight simulator (six-degrees-of-freedom flight mechanics models and control software) to improve the fidelity of simulations that support controller design for a wide range of operating conditions. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^