Skip Navigation
SBIR/STTR

Modeling and Controls for Synthetic Jet-Based Active Flow Control, Phase I

Active Technology Project

Project Introduction

In order to enable widespread application of Active Flow Control (AFC) technology on commercial transports, Actasys Inc, in collaboration with The Center for Advanced of Multifunctional Material Systems at University of California, Los Angeles (CAMMS-UCLA) and the Princeton University, intend to develop a model-based environment for the advancement of design and performance validation of AFC using Synthetic Jet actuators (AFCSJ). The core of this approach is establishing a feedback loop between new computational models, lab tests and field experiments in order to mature AFC actuation system design in a time-efficient and cost-effective and ready-implementable manner. This is a significant improvement on the current prevailing approach of iterative build-and-test for AFC development. Phase I will result in computational tools for modeling the performance of Synthetic Jet Actuators (SJA) resulting in optimized performance; Control loops which increase system energy efficiency; and a Data Management Platform (DMP) for test bed result analysis. Phase II will result in full- scale system validation in lab and field tests. Field demonstration of the system capabilities will use phase I outputs and will be performed using a previously developed full-scale tractor-trailer test bed in order to reduce risk and cost compared to flight-testing. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Target Destinations

^