Skip Navigation
SBIR/STTR

Development of Diamond Vacuum Differential Amplifier for Harsh Environment Power Electronics, Phase II

Active Technology Project

Project Introduction

In this proposed Phase II, Scientic and Vanderbilt University will develop a novel vacuum field emission differential amplifier (VFEDA) using low electron affinity nanodiamond (ND) material as electron emitters for high-power electronic application in harsh environments. The ND-VFEDA is a fundamental circuit building block for vacuum integrated circuits (VICs) ideally suited for high radiation and space applications. The proposed high-power ND-VFEDA will be capable of operating over a wide-temperature range (-125˚C to 450˚C), possess tolerance to extreme doses of ionizing radiation and deliver the long-term reliability and stability needed to successfully execute environmentally stressful space science missions. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

^