Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Adaptive Aeroservoelastic Suppression for Aircraft Upset and Damage Conditions

Completed Technology Project
71 views

Project Description

Adaptive Aeroservoelastic Suppression for Aircraft Upset and Damage Conditions
Impact Technologies, in collaboration with Tennessee State University, propose to develop and demonstrate an adaptive system identification and multi-loop control methodology that provides real-time aircraft structural mode suppression associated with aeroservoelastic interaction under upset and damage conditions. The proposed program will develop an effective real-time aircraft structural model, including rigid body dynamics and structural flexible modes, which will be used by the on-line, adaptive control system proposed. In parallel, the research team will also develop an innovative time/frequency domain system identification algorithm that can provide continuous updates to the real-time aircraft model and automatically assess the level of existing structural mode excitation. Next, a singular value decomposition technique will be implemented to capture and quantify the associated dominant parameter uncertainties of the dynamic aircraft model and adjust accordingly. Finally, a multi-loop adaptive control structure will be developed that provides both structure and robustness of the aircraft by using the continuously identified model with the overall goal of responding to the structural safety and performance needs including the effects of aeroservoelastic interaction and structural flexible mode changes. The proposed approach uses a generalized predictive control (GPC) scheme, which can be used to both update the real-time model and design a controller, for active aeroservoelastic suppression under upset conditions. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

^