Skip Navigation
NASA Innovative Advanced Concepts

Turbolift

Completed Technology Project
655 views

Project Description

Turbolift to assist astronauts on long duration space exploration missions. Credits: Jace Alexander Gruber
Long duration space exploration missions cause astronauts to experience physiological deconditioning, including bone loss, muscle atrophy, cardiovascular deconditioning, sensorimotor/balance impairment, and vision changes. For a crewed Mars mission, where microgravity and reduced gravity (e.g. 0.38 G on the Martian surface) exposure may occur for 2+ years, deconditioning impacts the astronauts' health, well-being, effectiveness, and safety. Here, we propose a novel linear artificial gravity (AG) technology designed to counteract these deleterious effects on the astronauts. Previous centrifuge AG systems have negative impacts due to the constant rotating environment: 1) Coriolis forces, which may be confusing and limit concurrent exercise or lead to injury, 2) vestibular crosscoupling illusions, which are highly provocative and cause motion sickness, and 3) gravity gradients, where the loading varying along the length of the astronauts body. Alternatively, our linear AG technology (termed Turbolift) suffers from none of these confounding problems, particularly during the acceleration/deceleration loading phases. Briefly, the conceptual paradigm is as follows: the astronaut is linearly accelerated at 1G for ~1s, then is rotated 180 degrees to prepare for a 1G deceleration for ~1s. This process is repeated to create intermittent AG where the force is always headward similar to standing here on Earth. The experience is likely to be analogous to bouncing mildly on a trampoline. The intermittent loading is intended to reduce or eliminate the physiological deconditioning in a comprehensive, multi-system manner. To evaluate the linear AG technology, we aim to perform an engineering design analysis to quantify the required size and mass of the system. We also aim to design a scale model of the system to test its feasibility, such that it can be properly evaluated as countermeasure system to enable long duration crewed exploration missions. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^