Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Bubble Free Cryogenic Liquid Acquisition Device, Phase I

Completed Technology Project

Project Introduction

Recent results of fundamental capillary fluidics investigations conducted aboard the ISS have targeted families of geometries with direct application to Liquid Acquisition Devices for low-g propellant management. NASA's exploration goals will demand low-g cryogenic propellant management for the Exploration Upper Stage and other vehicles. The specific geometric requirements of a LAD providing bubble-free cryogenic rocket engine flows of 37L/min may now be readily determined using closed-form expressions validated from archived ISS investigations. In this effort we provide the precise geometric specifications and margins for a passive capillary fluidic LAD for cryogenic fluid management for in-space transportation. We will provide design tools such that dimensions may be tuned to adapt to changes in requirements, propellants, tank geometry, materials, flight, etc. We will employ the SE-FIT software to determine all a/symmetric global minimizing surfaces and myriad stability limits as functions of acceleration environment magnitude and orientation with special considerations for orbit and coast with drag, gravity gradient, spacecraft mass center, and self-gravitation. We will confirm predictions with experiments performed employing accurately-scaled devices in a drop tower. Our long term commercial interest is the broad deployment of our method to design highly configurable devices for a broad range of commercial aerospace tankage uses. More »

Primary U.S. Work Locations and Key Partners

Technology Transitions

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Target Destinations

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.