Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Reclaimable Thermally Reversible Polymers for AM Feedstock

Completed Technology Project
149 views

Project Description

Reclaimable Thermally Reversible Polymers for AM Feedstock, Phase I
Cornerstone Research Group Inc. (CRG) proposes to design and develop thermally-reversible polymeric materials that will function as reprocessable thermosetting matrixes. These material systems will enable reclamation and repurposing of structural fiber-reinforced composites into new configurations during extraterrestrial missions, such as conversion to Additive Manufacturing (AM) feedstocks or direct fabrication into multipart constructs. The thermally-reversible polymer thermosets also present the opportunity to generate volumes of AM feedstock through function as an optimized binder matrix, allowing compounding and impregnation/infusion of in-situ resources such as environmentally sourced metallic, mineralogical (i.e. regolith), and desized/milled non-reprocessable composites. This material approach will provide NASA with a means to generate AM feedstock and support in-situ resource utilization with a reduced reliance on pristine raw material payloads. CRG has already demonstrated the efficacy of thermally-reversible polymer structures in commercial adhesive applications, as well as in a previous NASA technical effort for modifying waste packaging plastics to provide improved compatibility to AM processing (specifically FDM). The proposed concept not only has the potential to enable resource reclamation and AM capability, but also to advance the state-of-the-art in AM materials technology. CRG's proposed approach to develop thermally-reversible polymer materials for thermoset polymer reprocessing, and demonstration of reclamation and AM compatibility evaluation, will provide NASA with a material and processing technology readiness level (TRL) of 3 at the conclusion of the Phase I effort. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^