Skip Navigation
SBIR/STTR

Low coherence wavefront probe for nanometer level free-form metrology, Phase I

Completed Technology Project

Project Introduction

We propose an innovative, low coherence probe for rapid measurement of free-form optical surfaces based on a novel method of spectrally controlled interferometry. The key innovations are the use of a new interferometric modality and a novel non-contact optical probe that together measure high surface slope acceptance angles to nanometer sensitivity. When the probe is integrated with a precision motion, x, y, & z metrology frame (Phase II) (see Figure-1), it will meet NASA's need to measure free-form optical surfaces from 0.5 cm to 6 cm diameter ranging from F/2 to F/20, including slopes up to 20 degrees (with potential for 60 degrees), with an uncertainty targeted at 2 nm RMS. The probe operation does not require tilting to measure slopes. This results in this simplified cartesian metrology frame, also critical to achieve 2 nanometer measurement uncertainty. These features: nanometer resolution and 20 degree slope acceptance angle, have up to this time not been found in a single probe or sensor, non-contact or contact. This proposal integrates the spectrally controlled source and breadboard probe developed under a previous SBIR to develop a practical detection method reading the technology for a successful SBIR Phase II project. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Share this Project

Organizational Responsibility

Project Management

Project Duration

Technology Maturity (TRL)

Technology Areas

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^