Skip Navigation
SBIR/STTR

Cryogenic Cooling System for Zero-Venting Storage of Supercritical Air Packs, Phase I

Completed Technology Project

Project Introduction

Cryogenic Cooling System for Zero-Venting Storage of Supercritical Air Packs, Phase I
Supercritical air at cryogenic temperature is an attractive source of breathing air because of its very high density and low pressure. However, heat leak into the cryogenic tank causes the stored air to expand and vent, thus limiting the storage life of a charged system. We propose to develop a storage system for supercritical air tanks that provides cryogenic cooling that will intercept heat leaks to prevent venting and enable long-term storage of charged, supercritical air tanks. The innovative, mechanical cryocooling system provides flexible coupling and quick disconnection from the storage tanks, as well as high reliability and efficient, low-power operation. In addition to storage, the system can be used to charge the tanks with supercritical air without the use of expendable cryogens. In Phase I, we will prove the feasibility of the system through design trade-off and optimization analyses that will produce a conceptual design and operational description of a supercritical air storage system. The system will be designed to store multiple units of NASA?s existing supercritical air self-contained breathing apparatus (SCBA) system. In Phase II, we will build and demonstrate a prototype storage system for supercritical air SCBAs. More »

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^