Skip Navigation
Small Business Innovation Research/Small Business Tech Transfer

Neuromorphic Enhanced Cognitive Radio

Active Technology Project
986 views

Project Description

Briefing Chart Image
Intellisense Systems, Inc. proposes in Phase II to advance development of a Neuromorphic Enhanced Cognitive Radio (NECR) device to enable autonomous space operations on platforms constrained by size, weight, and power (SWaP). NECR is a low-size, -weight, and -power (-SWaP) cognitive radio built on the open-source framework, i.e., GNU Radio and RFNoC™, with new enhancements in environment learning and improvements in transmission quality and data processing. Due to the high efficiency of spiking neural networks and their low-latency, energy-efficient implementation on neuromorphic computing hardware, NECR can be integrated into SWaP-constrained platforms in spacecraft and robotics, to provide reliable communication in unknown and uncharacterized space environments such as the Moon and Mars. In Phase II, Intellisense will improve the NECR system for cognitive communication capabilities accelerated by neuromorphic hardware. We will refine the overall NECR system architecture to achieve cognitive communication capabilities accelerated by neuromorphic hardware, on which a special focus will be the mapping, optimization, and implementation of smart sensing algorithms on the neuromorphic hardware. The Phase II smart sensing algorithm library will include Kalman filter, Carrier Frequency Offset estimation, symbol rate estimation, energy detection- and matched filter-based spectrum sensing, signal-to-noise ratio estimation, and automatic modulation identification. These algorithms will be implemented on COTS neuromorphic computing hardware such as Akida processor from BrainChip, and then integrated with radio frequency modules and radiation-hardened packaging into a Phase II prototype. At the end of Phase II, the prototype will be delivered to NASA for testing and evaluation, along with a plan describing a path to meeting fault and tolerance requirements for mission deployment and API documents for integration with CubeSat, SmallSat, and rover for flight demonstration. More »

Anticipated Benefits

Project Library

Primary U.S. Work Locations and Key Partners

Technology Transitions

Light bulb

Suggest an Edit

Recommend changes and additions to this project record.
^