Skip Navigation
SBIR/STTR

Combining Discrete Element Modeling, Finite Element Analysis, and Experimental Calibrations for Modeling of Granular Material Systems, Phase I

Completed Technology Project

Project Introduction

Combining Discrete Element Modeling, Finite Element Analysis, and Experimental Calibrations for Modeling of Granular Material Systems, Phase I
The current state-of-the-art in DEM modeling has two major limitations which must be overcome to ensure that the technique can be useful to NASA engineers and the commercial sector: the computational intensive nature of the software, and the lack of an established methodology to determine the particle properties to best accurately model a given physical system. The proposed work will address both of these limitations. We will look at two approaches to overcome the particle count limitations of DEM: investigate the scaling up of particle size; and combine FEA and DEM to look at problems of densely packed solids. We will explore regimes where DEM and FEA are applicable and establish a coupling methodology that can be further developed during phase II. To address the lack of an established methodology to determine the particle properties to best accurately model a given physical system, we will investigate several small scale experiments that can be used to characterize DEM models. The proposed work will advance the state-of-the-art in DEM. At the end of phase I we will show the feasibility of developing modeling approaches to overcome the main limitations of DEM. More »

Anticipated Benefits

Primary U.S. Work Locations and Key Partners

Project Library

Share this Project

Organizational Responsibility

Project Management

Project Duration

This is a historic project that was completed before the creation of TechPort on October 1, 2012. Available data has been included. This record may contain less data than currently active projects.

A final report document may be available for this project. If you would like to request it, please contact us.

^