Identification and Significance of Innovation

Magnesium diboride (MgB_2) will enable low cost, round, lightweight, potential low AC loss superconductors for AC-tolerant motor/generator stator coils operating at 20 K in all-electric airborne vehicles.

Technical Objectives

Develop low AC loss MgB_2 superconductor wire for the stators of cryogenic motors and generators cooled to 20 K that would operate at greater than 1.5 T fields and 500 Hz. Targeted loss budget is 10W/kA-m.

Phase I Accomplishments

- Fabricated MgB_2 conductors with 20 µm filaments made with nano-boron powders to reduce hysteretic losses.
- Fabricated MgB_2 conductors with resistive annular components and copper outer sheath to reduce eddy current and ferromagnetic losses, respectively.
- Characterized the transport current and AC losses of fine filamentary MgB_2 wire.
- Outlined a program for developing MgB_2 wire for stator coils in a Phase II program.

NASA Applications

- Aircraft motor/generators, Cables, ADR coils, Transformers, Inductors, Magnetic bearings, Actuators, MHD magnets, Power Conditioning Equipment, Magnetic Shielding

Non-NASA Applications

- Wind Turbine Generators, MRI systems, Transformers, Motors, Fault Current Limiters, SMES, and Inductors for Power Conditioning

Contacts

- Gerald Brown, NASA/GRC, (216) 433-6047
- Jeff Trudell, NASA/GRC, (216) 433-5303
- Albert Kascak, NASA/GRC, (216) 433-6024
- Mr. Matt Rindfleisch, PI, Hyper Tech, (614) 481-8050
- Mr. Michael Tomsic, Hyper Tech, (614) 481-8050

NON-PROPRIETARY DATA