20mN VARIABLE SPECIFIC IMPULSE COLLOID THRUSTER

Busek Co. Inc.

Nathaniel Demmons, Proposal No. S3.04-8878

OBJECTIVES
- Produce electrospay thruster prototype capable of operating at 20mN thrust
- Analyze life-limiting mechanisms, and determine mitigation techniques
- Improve upon existing emitter fabrication process
- Develop new techniques for producing electrospay emitters using easily acquired porous metals

ACCOMPLISHMENTS

NOTABLE DELIVERABLES PROVIDED
- Developed and tested the largest, highest power electrospay thruster produced to date
- Developed and tested a flow controlled monolithic electrospay thruster using fiber metal media
- Devised a method to produce electrospay emitters from commercial off the shelf porous metal sheets

KEY MILESTONES MET
- Successfully tested full-scale electrospay thruster
- Material selection successfully mitigated electrochemical degradation
- Performed active flow control electrospay testing of fiber metal media thruster

FUTURE PLANNED DEVELOPMENTS

PLANNED POST-PHASE II PARTNERS

PLANNED/POSSIBLE MISSION INFUSION
- Saturn Rings Observer
 - Missions with multiple operating regimes, particularly those requiring high thrust-to-power propulsion systems

PLANNED/POSSIBLE COMMERCIALIZATION
This or similar systems can be scaled to suit a variety of mission profiles, including attitude control and primary propulsion for satellites of various life spans. These systems are of particular interest to missions with strict power budgets.

<table>
<thead>
<tr>
<th>CONTRACT (CENTER)</th>
<th>Glenn Research Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLICITATION-PHASE</td>
<td>2010 Phase II SBIR</td>
</tr>
<tr>
<td>SUBTOPIC</td>
<td>S3.04</td>
</tr>
<tr>
<td>TA</td>
<td>Beginning - 2; End - 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRL</th>
<th>IN</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>OUT</th>
</tr>
</thead>
</table>